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1 Introduction

My research is primarily in the field of topology and geometry, specifically in low dimensional
topology and knot theory. A knot K is an embedding of the unit circle S1 into S3 := R3 ∪ {∞}.
Two knots are equivalent if there is an ambient isotopy that takes one knot to the other. In
general, there is no computationally viable way to tell if two knots are equivalent or not. So one
employs various knot invariants, functions on knots that are invariant under ambient isotopy, to
attempt to distinguish knots.

To give an intuitive idea of the main questions in knot theory, imagine an extension cord.
Tie it up any way you can, then connect the ends by plugging it into itself. Is it possible to
untie the extension cord without unplugging it? Usually someone will convince themselves that
certain knots cannot be untangled, but in general, how can we be sure when it cannot be untied?
This is where invariants and diagrams come in. A knot diagram is a projection of the knot to a
2-dimensional plane with a finite number of double points and no points of higher intersection. At
each point of intersection, we identify which strand is “over” the other. From these diagrams, we
want to be able to say something about the knot. An amazing result of Menasco [10] tells us that
if the knot diagram is alternating and reduced, then it cannot be simplified further. And therefore
it cannot be untied! This result takes the combinatorics of a diagram and tells us topological
properties of the knot.

So, from Menasco, the diagram alone is enough to get information about the knot. What
other results can we deduce from the diagram alone? In the 1980’s, W. Thurston showed that
there are three types of knots, the most common being hyperbolic knots. A knot is hyperbolic
if its complement in S3 admits a geometric structure with a complete hyperbolic metric. This
shows that the topology of knots and their geometry are intrinsically related. The results that
followed started to give us ways to estimate the hyperbolic volume of a knot, another important
invariant, just from the diagram. For instance, D. Thurston shows that for any link K with a
diagram that has n crossings,

vol(K) ≤ voctn

where voct ≈ 3.6638 is the volume of the ideal hyperbolic octahedron. Thus, we can merely look at
the combinatorial properties of a diagram and obtain geometric results. I consider these results to
be some of the most interesting in knot theory. My current work is in the vein of these ideas: given
combinatorial information about a diagram, what topological or geometric properties are present?

By using a result of Adams, Shinjo, and Tanaka, we know that every knot has a diagram with
all crossings on a single horizontal arc of the knot, and we say a diagram like this is a straight
diagram, see Figure 1. To obtain a straight diagram from a diagram with the minimum number
of crossings, we likely had to increase the number of crossings. Thus, we make an invariant called
the straight number of a knot K, str(K), which is the minimum number of crossings of any
straight diagram of K.
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Figure 1: A diagram of a knot in straight position and its simplified diagram.

With this structure, what combinatorial properties are present which allow us to say something
about the topology and geometry of the knot? This is, in general, an open question. Here we
present some new results in this direction using the structure of straight knots.

2 Straight number

A theorem by Adams, Shinjo, and Tanka [1, Theorem 1.2] states that every knot has a projection
that can be decomposed into two sub-arcs such that each sub-arc never crosses itself. From this,
we know that every knot can be drawn with two arcs where all crossings occur between the these
two arcs. By planar isotopy, we can make one of these arcs straight, and we say the diagram is
in straight position.

Definition 2.1 Given a knot K, the straight number of K, str(K), is the minimum number of
crossings over all diagrams of K that are in straight position.

This following theorem was proved with the use of many Python scripts that I developed
and wrote to efficiently build a list of all possible straight knots, the topology and hyperbolic
geometry program SnapPy, [4] and a super computer. To achieve this, I employed the fact that
there are a finite number of knots with straight number n. And it is possible to enumerate all
diagrams in straight position with n crossings. Thus, we can just look at the list we create and
identify all these knots. Naturally, many of these diagrams will be of knots with straight number
less than n. So we proceed from n = 3 and increase n, identifying each diagram. This process
allowed us to calculate the straight number for the standard table of knots up to 10 crossings in
Rolfsen [19]. Here are the first examples of knots which are not perfectly straight.

Theorem 2.2 (O. 2018) Let K be a knot with 10 or less crossings. Then K is perfectly straight
or str(K) is given below.

str(8α) = str(9β) = 10, α ∈ {16, 18}, β ∈ {32, 47}
str(9γ) = str(10δ) = 11, γ ∈ {29, 33, 34, 41}, δ ∈ {69, 75, 97, 101, 165}
str(940) = str(10ε) = 12, ε ∈ [84, 89] ∪ [91, 93] ∪ {96, 100} ∪ [103, 105]∪

{108} ∪ [111, 114] ∪ [116, 119] ∪ {122, 123}
str(10ζ) = 13, ζ ∈ {102, 121}

Note that of the 250 knots with 10 or less crossings, only 41 of them are not perfectly straight
and appear in the list above. One can ask what families of knots are not perfectly straight and
what is the largest straight number can be given the crossing number of a knot? We begin to
answer these questions with the following theorems.
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Theorem 2.3 (O. 2018) Given a knot K, str(K) ≤ 2c(K)−1 − 1.

The proof of this theorem comes from a careful counting argument of the algorithm described
by Adams, Shinjo, and Tanaka. But it begs the question, is there a family of knots which attain
this upper bound, i.e., how sharp is this bound? We guess it is not sharp, but there may be a
family which does require an exponential increase in the number of crossings.

As to what knots might be candidates for the largest differences in straight number and
crossing number, we look to weaving knots. A weaving knot, W (p, q), is obtained by making a
torus knot Tp,q alternating.

Theorem 2.4 (O. 2018) Let n ≥ 3,m ≥ n+1 and gcd(n,m) = 1. Every Weaving knot W (n,m)
is not perfectly straight, i.e.

c(W (n,m)) < str(W (n,m)).

The proof of this result uses the classic results of Menasco and Thistlethwaite that the Tait
flyping conjecture is true, [11]. In addition, we then need Menasco’s result “an alternating
knot is prime if and only if it looks prime,” [10]. With these two important results about the
combinatorics of alternating diagrams, we again perform a careful counting argument.

Given a (not) perfectly straight alternating knot, K, the next theorem allows us to create
families of alternating knots {Kα} that are also (not) perfectly straight. A twist region is a
maximal sequence of bigons and increasing the number of full twist means adding in an even
number of bigons to that region.

Theorem 2.5 (O. 2018) Let K be an alternating knot. Given any minimal diagram D of K,
let K ′ be the knot obtained by increasing the number of full twists in any twist region of D. Then
K is perfectly straight if and only if K ′ is perfectly straight.

This lets us add full twists to our weaving knots and does not change the conclusion of theorem
2.4. More importantly, this theorem allows us to build the first infinite family of not perfectly
straight knots for which we explicitly know the straight number, but we exclude here.

3 Bridge Spectrum

This section gives a very brief summary of the main result of my thesis, [13]. In 1954, Schubert
[20] defined the bridge number of a knot. There are numerous ways to define bridge number, but
the one that our discussion best fits is the following. In a 3-manifold M , a properly embedded
arc α is an embedding of the unit interval into M with ∂α ⊂ ∂M . A properly embedded arc α
is called trivial if there is an arc β ⊂ ∂M such that α ∩ β = ∂α = ∂β and α and β bound a disk
embedded in M . The condition of being trivial keeps an arc from being knotted. A classical result
is that every 3-manifold M can be decomposed into M = V1tΣ V2, where Vi is a handlebody and
∂Vi = Σ for i = 1, 2. If Σ is a genus g surface, this splitting is called a Heegaard decomposition
of genus g. The 3-sphere S3 has Heegaard splittings of every genus g ≥ 0. Let J be an embedded
1-manifold in M , then a bridge splitting of (M,J) is a Heegaard splitting of M such that J
intersects Σ transversely, and J ∩ Vi is a collection of trivial arcs.

Definition 3.1 For a knot K ⊂ S3, the bridge number b(K) is the minimum number of trivial
arcs over any genus zero bridge splitting of (S3,K).
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From here, one might ask why we only consider genus zero bridge splittings. This question
is what spawned the genus g bridge number, and we suddenly have an invariant for every non-
negative integer. This generalization was first studied by Doll in [5] and Morimoto and Sakuma
in [12].

Definition 3.2 For a knot K ⊂ S3, the genus g bridge number bg(K) is the minimum number
of trivial arcs over any genus g bridge splitting of (S3,K).

Note that the classical bridge number is the genus zero bridge number. We look at each of
these numbers together, in what is known as the bridge spectrum of a knot, introduced by Zupan
in [21].

Definition 3.3 For a knot K ⊂ S3, the bridge spectrum, b(K) is the list of genus g bridge
numbers, where

(b0(K), b1(K), b2(K), . . .)

and bg(K) = 0 if K can be embedded into a genus g Heegaard surface.

The bridge spectrum necessarily decreases by at least one, through a process called meridional
stabilization. This means every spectra is bounded above by (b0(K), b0(K) − 1, b0(K) − 2, . . .),
and is eventually zero for all g > b0(K). A knot that attains this upper bound is said to have
a stair-step bridge spectrum. If bg(k) − bg+1(K) = n > 1, we say that K has a gap of size n at
index g. My dissertation was focused on computing the bridge spectrum of cables of 2-bridge
knots.

Theorem 3.4 (O. 2016) Let Kp/q be a non-torus 2-bridge knot and Tm,n an (m,n)-torus knot.
If K := cable(Tm,n,Kp/q) is a cable of Kp/q by Tm,n, then the bridge spectrum of K is b(K) =
(2m,m, 0).

The proof of theorem 3.4 is broken into two main cases using the famous result of Casson and
Gordan that a splitting is either strongly irreducible or weakly reducible. In both cases, theorems
of Zupan [21] are then applied to give us more control over the surfaces. Then we make use of
classical work of Hatcher’s and Thurston’s paper [8] where they compute the boundary slopes of
incompressible surfaces in 2-bridge knot complements, as well as many others.

4 Future Work

4.1 Straight knots

In the work to prove Theorem 2.2, we noticed that there seemed to be a relation between straight
number and volume. For fixed crossing number, the knots which had higher volumes are more
likely to be the knots which also have higher straight numbers. This general idea has spawned
two different directions of investigation. The first, is to create a random knot model and with it,
look at the expected value of the volume of a random knot. This work is joint with Anastasiia
Tsvietkova, my unit lead at OIST. The second is to look at volumes of a special class of knots
called Snail knots. These knots are perfectly straight and are candidates for the highest volume
knots with n crossings.
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4.1.1 Random Straight Links

Above we state that every knot has a straight diagram. This does not hold for every link though.
We will create a random model that contains all knots and some links, then expand it to contain
all links. Let Stop, Sbot be two random valid strings of s pairs of parenthesis. We let the matched
parentheses define the endpoints of semicircles, and when lined up as in Figure 2, we obtain a
random link.

For example when s = 5, we might have Stop = ( ( ) ( ) ) ( ( ) ) and Sbottom = ( ) ( ( ( ) ( ) ) ),
yielding the following link projection.

( ( ) ( ) ) ( ( ) )

( ) ( ( ( ) ( ) ) )

Figure 2: On the left, a pair of strings of parentheses, in the middle, the (5,1)-random straight
link, and on the right, the corresponding (5,3)-random straight link projection.

If we then allow for r parallel copies of each component, and use a new result of Even-Zohar,
Hass, Linial, and Nowik, [7], we can now obtain all links. We call these (s, r)-random straight
links. What can we show with this random model? The first thing one usually wants to know
about a random model is if it is likely to produce nontrivial links.

Theorem 4.1 Let L be a (s, r)-random link. If L is alternating and s tends to infinity, then L
is nontrivial with probability one. If L has its crossings chosen at random and s and r tend to
infinity, then L is nontrivial with probability one.

Surprisingly, to show Theorem 4.1, we use a classic result of Poincaré [17], that is usually ap-
plied to differential equations and an algorithm called Zeilberger’s algorithm which finds recursive
relations [16].

Next, we use the classic results from Lackenby, Agol and Thurston.

Theorem 4.2 ([9]) Let D be a prime alternating diagram of a hyperbolic link L in S3. Then

v3(t(D)− 2)/2 ≤ V olume(S3 − L) < 10v3(t(D)− 1).,

where v3(≈ 1.01494) is the volume of a regular hyperbolic ideal 3-simplex.

The upperbound is actually an improvement on Lackenby’s original upperbound by Agol and
Thurston. Also, the upperbound does not require the link be prime and alternating.

By applying this theorem to our random straight links, we arrive at the following expected
volume of the complement.

Theorem 4.3 (O., Tsvietkova 2018) Let D be a prime alternating diagram of a hyperbolic
link L in S3 obtained from a (s, r)-random straight link. Then

v3((2s− 1)r2 − s− 3)/2 ≤ E(V olume(S3 − L)) ≤ 10v3((2s− 1)r2 − s− 3),
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where v3(≈ 1.01494) is the volume of a regular hyperbolic ideal 3-simplex. In particular, when
r = 1, L has 2s− 1 crossings and

v3(s− 4)/2 ≤ E(V olume(S3 − L)) ≤ 10v3(s− 3).

Again, the upperbounds here do not require the link be prime and alternating.
Our next step is improve these bounds by applying the work of Dashbach and Tsvietkova [6].

This involves analysis of the number of twist regions and how many bigons are present in them.
We also hope to find other invariants for which we can bound the expected value.

4.1.2 Snail Links

Champanerkar, Kofman, and Purcell note in their paper [3] that Xiao-Song Lin conjectured that
Weaving links are the highest volume knots for fixed crossing number. In recent work with Jessica
Purcell, we have numerical data which suggests that there is a class of knots which has higher
volume. These knots are called snail links and were discovered in the process of proving Theorem
2.2.

A snail link, snail(s, c) is an alternating link with s semicircles on opposite sides and ends of
the straight strand and c crossings, with the condition that c ≥ 2s− 1. See Figure 3.

Figure 3: The snail link snail(2, 7). The two semicircles defined by s = 2 on each end of the
straight strand are colored gray. There is a unique way to add in the rest of the black arcs.

This family of links has many interesting properties. We know that snail(2, c) = snail( c+a3 , c)
where a = 2 or 3, and moreover, these are 2-bridge links. When c = 2s− 1, these are a different
2-bridge knot. It is our conjecture that these are the only cases when a snail link is a 2-bridge
link. Looking at numerical data for the first 250,000 snail links, we have the following conjecture
and question.

Conjecture 4.4 For fixed c, the three 2-bridge snail links above, when they exist, are the smallest
volume snail links.

Question 4.5 (O., Purcell 2018) For fixed c, is the largest volume snail link is the largest
volume link with c crossings?

4.1.3 Straight number under knot operations

A common question for knot invariants is how it behaves under connected sum, combining two
knots, which we write K#J for knots K and J . We conjecture the following:

Conjecture 4.6 Given knots K and J , str(K#J) = str(K) + str(J).
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We are currently using ideas similar to Menasco, [10] to investigate this conjecture. Next, we
guess that cabling, another operation, will drastically increase the straight number.

Question 4.7 How does straight number behave under cabling?

4.2 Bridge spectrum

Given a knot K, can we compute the bridge spectrum? In general, this is a very difficult problem,
see Bowman, Taylor, Zupan [2]. There is not even a computationally reasonable way to compute
b0(K), the very first number in the list. Perhaps a more tenable question would be the following.

Question 4.8 For any decreasing sequence v of positive integers, is there a knot K such that
b(K) = v?

More generally, in math we are always looking for links to other topics in math. In my thesis,
some relations between tunnel number and bridge spectrum are investigated. A recent paper
of Purcell and Zupan, [18] shows that hyperbolic volume and the genus g bridge number are
independent.

Question 4.9 What connections are there between bridge spectrum and other invariants?

4.3 3D modeling and printing

The interest in 3D printing has been growing for some time now. There are many questions
that are arising as a result of more and more people start to use this technology and very few
mathematical papers have been written on the subject. There are two main areas I would like
to investigate: how to produce high quality models and the physical process of the 3D printing.
Both offer a variety of questions and here are a few.

Question 4.10 What topics in mathematics would benefit from a 3D model?

This is a large and broad questions that does not have a specific answer, but one that we
should keep on our minds, in case we stumble across something. The next question deals with
.stl files, which are what most 3D printers read in to create a print.

Question 4.11 Can we expedite the process of creating .stl files without the use of extra software?

This is a question I am trying to answer for Riemann Sums of surfaces, which I mention in
my teaching statement. We will post the program we build online for anyone to use, so they can
create their own .stl files quickly and easily.

5 Undergraduate and Graduate Research

Here, I want to briefly mention projects I have mentored and some of the possible avenues of
research that I hope to advise students down. As a graduate student, I was a co-mentor for an
undergraduate who painted a mural in the math student lounge. We also organized a Bridges
Math and Art conference which was my first time in an organizer position. At OIST, I lead a
research project with a visiting intern from Northeastern University. Together, we computed the
tunnel number of almost 1800 knots, which were previously unknown. We also wrote these results
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up together and have submitted the paper for publication. The student has also presented the
findings at SUMS undergraduate mathematics conference and I am very proud of their accom-
plishments.

For future projects, knot theory has many important open questions that can be understood
without lots of background knowledge. Diagrams and the combinatorial aspects of knots are often
accessible to undergraduates. For example, the following famous conjecture is open.

Conjecture 5.1 Given two knots K and J , c(K#J) = c(K) + c(J), where c(K) is the crossing
number of K.

I remember when I first started research in knots and being able to completely understand
current open questions was very exciting for me. I hope to give students the same excitement
of discovering new questions for them to work on. Specifically, straight number has open ques-
tions which are appropriate for undergraduate research. It also has questions which are more
appropriate for graduate research. For example, an undergraduate might find more families of
knots which are not perfectly straight. A strong undergraduate or graduate student could look
into the relation between straight number and other invariants. Knowing that straight number is
independent from an invariant is just as important as knowing it is dependent. There are many
options and sharing my knowledge and seeing a student discover their own results is something I
truly look forward to.
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