

Exploring Visualizations Nicholas J. Owad

Exploring Visualizations

An Overview of a Seminar in 3D Modeling and Printing

Nicholas J. Owad

University Of Nebraska - Lincoln

Summer 2015

nowad2@math.unl.edu

▶ nick.owad.org

3D Modeling Workshop

Exploring Visualizations Nicholas J. Owad

During the 2014-15 Year, I ran a workshop meant to introduce faculty, grads, and undergrads to 3D modeling and 3D printing.

- The Goal of the Workshop: To Make the participants able to design their own ideas and print them.
- One session, 1-2 hours a week
- Ran in a workshop manner Not lecture
- Projects (ideally) take a single workshop, but many went for longer
- Used Rhino 5 for Windows (30 license school lab \$975)
- Local company, owned by an alumnus, let us use his Makerbot Replicator 2 at cost of material

This Talk's Goals

Exploring Visualizations Nicholas J. Owad

The Goal of this talk is to give you an outline for a workshop you want to run.

Or to let you get some ideas of things you want to make yourself.

Let everyone realize how useful customizable 3D models can be for a mathematician in research or teaching.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Basics Point and Click design

Exploring Visualizations Nicholas J.

Owad

The beginning of the workshop focused on users becoming familiar with the GUI and basic creation tools available to them.

- Understanding how the viewports work and rotating/panning them
- Placing objects: Points, lines, etc
- Working in a digital 3D environment
- This is a long process About half a semester
- The following projects were designed to make the user comfortable in this new world

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

Nebraska

Castle - Day 1

Exploring Visualizations

Nicholas J. Owad The first project was not meant to be printed. Commands they learn:

- Create cubes, spheres, cones, cylinders, etc
- Copy and Paste
- Move

Directions: Build a *SWEET* Castle with the shapes you can now create.

Main skill they acquire: Intuition about 3D space they are working in

Castle - Day 1

◆ロト ◆昼 ト ◆臣 ト ◆臣 - の々で

Square Circle Triangle Game - Day 2 Using all 3 dimensions

Exploring Visualizations

Nicholas J. Owad

Commands they learn:

- Boolean operations: Difference, Intersection, Union
- Rotate

Direction 1: Build a rectangluar prism that has a square hole, circle hole, and triangle hole (all the "same" size).

Direction 2: Build a single object that can pass through each hole and fill it completely. (Hint: This is possible.)

Square Circle Triangle Game - Day 2 Using all 3 dimensions

Exploring Visualizations Nicholas J. Owad

Part two of this project:

Directions: Pick 3 words of the same length, n, and "do the same thing." That is, create n blocks which have 3 letters on each block so that from the 3 directions they are all visible.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Failure - Much to complicated for the second project.

Nebraska Square Circle Triangle Game - Day 2

Extrusions - Replacement Day 2

Exploring Visualizations Nicholas J. Owad

What to do instead:

Extrustions!

Commands they learn:

- Placing bitmaps
- Extrude curve
- Trim
- Join

Directions: Come to class with a picture (Symbol, Emblem, etc.) Draw the outline with interpolated curves.

MUST BE A SINGLE CLOSED CURVE!

Extrude it.

・ロト ・西ト ・田ト ・田ト ・日・ シュマ

Platonic Solids

Exploring Visualizations

Nicholas J. Owad

Platonic Solids

- Commands: Array (polar), 3D rotate, Osnap
- Lots of ways to actually build the models: from faces, vertices, etc
- Spent a month just on these 5 shapes

▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → の へ ()

Seasonal

Exploring Visualizations Nicholas J. Owad

Pumpkins and Snowflakes

Modeling with Python

Exploring Visualizations

Nicholas J. Owad

Disclaimer: I am a novice programmer.

But I managed to get some nice results with a little help:

- Henry Segerman
- Google: Python Rhino tutorials One I used: • vimeo.com/28619851
- Rhino.Python Programmer's Reference

4.rhino3d.com/5/ironpython/index.html

This talk will be much more Rhino specific now.

Graphs

Exploring Visualizations Nicholas J. Owad

We will be building the graphs the same way most graphing applications do:

Plot a bunch of points and connect them.

Rhino uses nurbs (Non-Uniform Rational Basis Splines).

Fancy way to say: connect the points with polynomial curves so they are smooth.

Rhino command: AddInterpCurve

Graphs

Exploring Visualizations

Nicholas J. Owad The code from Henry that we use:

```
import sys, os
import rhinoscriptsyntax as rhino
from math import *
def draw_parametric_curve(function, param_range, num_points = 64):
    curve_pts = []
    for i in range(num_points):
        x = param_range[0] + (param_range[1] - param_range[0]) * float(i)/float(num_
        point = function(x)
        if point != None:
            curve_pts.append( rhino.AddPoint(point) )
        out = rhino.AddInterpCurve(curve_pts)
        rhino.DeleteObjects(curve_pts)
        return out
```

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

```
def cubic(x):
    return [x,.1*(x+1)*(x-1)*(x-4),0]
```

draw_parametric_curve(cubic, (-5,10))

18/1

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 二臣 - わへで

Graphs

Exploring Visualizations

Nicholas J. Owad For surfaces, graph:

$$z = \frac{1}{10} \left(x^2 - y^2 \right)$$

```
import rhinoscriptsyntax as rs
count = 21, 21
def s(x,y):
        return (.1*((x-10)**2-(y-10)**2)+11)
points = []
for i in range(count[0]):
    for j in range(count[1]):
        pt = i - 10, j - 10, s(i, j)
        points.append(pt)
rs.AddSrfPtGrid(count, points)
```


Graphs

Nicholas J. Owad

Surface result:

Integration

Exploring Visualizations

Nicholas J. Owad

Lets talk about approximating

$$\int_{x=-10}^{10} \int_{y=-10}^{10} \frac{1}{10} \left(x^2 - y^2\right) \mathrm{d}y \mathrm{d}x$$

```
import rhinoscriptsyntax as rs
from math import*
```

```
def s(x,y):
    return (.1*((x-10)**2-(y-10)**2)+11)
```

```
count = 20, 20
```


Integration

Exploring Visualizations

Nicholas J. Owad

Lets talk about approximating

$$\int_{x=-10}^{10} \int_{y=-10}^{10} \frac{1}{10} \left(x^2 - y^2\right) dy dx$$

Hyperbolic Geometry

Exploring Visualizations Nicholas J. Owad

Given a point P, we can invert it about a circle of radius r and obtain a new point P' by the simple relation $OP \times OP' = r^2$.

Inverting a point about a circle

Exploring Visualizations

Nicholas J. Owad

```
import rhinoscriptsyntax as rs
from math import*
basecircle = rs.GetObject("Select circle to invert about"
if rs.IsCircle(basecircle):
    radius = rs.CircleRadius(basecircle)
   center = rs.CircleCenterPoint(basecircle)
point = rs.GetObject("Select point to invert")
if rs.IsPoint(point):
        dist = rs.Distance( point, center)
a = (radius / dist ) ** 2
```

Nebraska Lincoln Inverting a point about a circle

Exploring Visualizations Nicholas J. Owad Lines in hyperbolic geometry are circles that intersect our red circle perpendicularly. For every two points there is a unique line that passes through them. To draw the line, we just invert one of the two given points, and draw the unique circle formed by those three points.

