Section 4.4 Example

This is to supplement the video, which has poor quality video, making the example impossible to read.

Example: \mathbb{P}_3 is the set of polynomials of degree at most 3. So stuff that can be written

$$a_0 + a_1 t + a_2 t^2 + a_3 t^3.$$

The two bases for \mathbb{P}_3 are

$$\mathcal{S} = \{1, t, t^2, t^3\}$$
$$\mathcal{T} = \{1, t+1, t^2 + t + 1, t^3 + t^2 + t + 1\}$$

These are both bases because they are linearly independent and span the whole set.

The polynomial is $p = p(t) = 1 + t + t^2 + t^3$. We want to find $[p]_{\mathcal{S}}$, the coordinate of p relative to basis \mathcal{S} . We need to figure out how we add up the basis elements to get p. Well it is easy to see that we need one of each of the elements in \mathcal{S} .

$$[p]_{\mathcal{S}} = \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}$$

And now we do the same for \mathcal{T} . But this is easier, since p is literally one of the elements, just written in the reserve order (which doesn't matter). So

$$[p]_{\mathcal{T}} = \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$$

Now we do it again with a new polynomial. Let $q = t^3$. Then

$$[q]_{\mathcal{S}} = \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$$

since t^3 is the last element of the basis S. And for the other basis,

$$[q]_{\mathcal{T}} = \begin{bmatrix} 0\\0\\-1\\1 \end{bmatrix}$$

as $0(1) + 0(t+1) - 1(t^2 + t + 1) + 1(t^3 + t^2 + t + 1) = t^3 = q$. That is the example worked out. Try: Let $r = 2 - t + 3t^3$. Find $[r]_{\mathcal{S}}$ and $[r]_{\mathcal{T}}$.