The 13

If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A as well as for that of B.

Def:

$$
\text { row } A=\text { span of Rows }
$$

© The rank of A is the dimension of the column Space of A.
The 14
The Rank Theorem
The dimensions of the column space and the row space of an $m \times n$ matrix A are equal. This common dimension, the rank of A, also equals the number of pivot positions in A and satisfies the equation

$$
\operatorname{rank} A+\operatorname{dim} \operatorname{Nul} A=n
$$

Warning!

$$
\begin{gathered}
\text { Row operations } \frac{D_{0} N U T}{\text { presewe row }} \\
\text { dependence. }
\end{gathered}
$$

