Math 253 – Week of March 30th Problems To Chew On

Problem 1. (a) For each real number r, define the linear transformation $D_r : \mathbb{R}^2 \to \mathbb{R}^2$ by setting $D_r(\mathbf{x}) = r\mathbf{x}$.

- i. Find the standard matrix for D_r .
- ii. Given two real numbers r and s, describe the composition $D_r \circ D_s$.
- (b) For each real number θ , define the linear transformation $R_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ by setting $R_{\theta}(\mathbf{x}) = A_{\theta}\mathbf{x}$, where $A_{\theta} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$. Use matrix multiplication to verify that, for any real numbers θ and ϕ , we have $R_{\theta} \circ R_{\phi} = R_{\theta+\phi}$ and explain why this makes sense geometrically.
- (c) For each real number a, define the linear transformation $T_a : \mathbb{R}^2 \to \mathbb{R}^2$ by setting $T_a(\mathbf{x}) = M_a \mathbf{x}$, where $M_a = \begin{bmatrix} 1 & a \\ a & b \end{bmatrix}$.

$$\begin{bmatrix} 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 0 & 1 \end{bmatrix}^{-1}$$

- i. Describe what T_a does to the plane geometrically.
- ii. Given two real numbers a and b, use matrix multiplication to find a simpler form for the composition $T_a \circ T_b$. Explain why your answer makes sense geometrically.

Problem 2. A frolic through the land of reflections and rotations.

Consider the linear transformations $F_1 : \mathbb{R}^2 \to \mathbb{R}^2$ and $F_2 : \mathbb{R}^2 \to \mathbb{R}^2$ with standard matrix representations

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix},$$

respectively.

- (a) In \mathbb{R}^2 , plot the triangle with vertices $\mathbf{v}_1 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$ and $\mathbf{v}_3 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and label each vertex.
- (b) To understand the linear transformations F_1 and F_2 , apply both maps to the vertices $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 . Please plot your results in the same plane as your triangle from the previous part. You should obtain two triangles. Please label each of the six vertices as $F_k(\mathbf{v}_j)$ for the appropriate values of k and j.
- (c) By studying your plot, you should see that transformations F_1 and F_2 are both *reflections*. In other words, F_1 is a reflection over the line ℓ_1 and F_2 is a reflection over the line ℓ_2 . What are ℓ_1 and ℓ^2 ?
- (d) You can compose the transformation F_1 with F_2 by first applying the map F_2 to a vector $\mathbf{x} = \begin{vmatrix} x_1 \\ x_2 \end{vmatrix}$
 - and then applying the the map F_1 to the result. This produces a new linear transformation $T = F_1 \circ F_2 : \mathbb{R}^2 \to \mathbb{R}^2$. Thinking about this transformation T diagrammatically, do you expect T to be another reflection? If so, over what line? If not, what is it? Please answer the question by drawing a new plot and following the triangle with vertices $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 by first applying F_2 and then applying F_1 to the result.
- (e) Given a vector $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \in \mathbb{R}^2$ which has $||u|| = \sqrt{u_1^2 + u_2^2} = 1$, called a *unit vector*, let $\mathbf{u}^{\perp} = \begin{bmatrix} u_2 \\ -u_1 \end{bmatrix}$. Using \mathbf{u} and \mathbf{u}^{\perp} , we define a transformation $\operatorname{Ref}_{\mathbf{u}} : \mathbb{R}^2 \to \mathbb{R}^2$ by the formula

$$\operatorname{Ref}_{\mathbf{u}}(\mathbf{x}) = (\mathbf{u} \cdot \mathbf{x})\mathbf{u} - (\mathbf{u}^{\perp} \cdot \mathbf{x})\mathbf{u}^{\perp} \\ = \left(\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} - \left(\begin{bmatrix} u_2 \\ -u_1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) \begin{bmatrix} u_2 \\ -u_1 \end{bmatrix}$$

where $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and \cdot denotes the dot product (from Homework 1). To understand this definition,

compute the standard matrix representations for the transformations $\operatorname{Ref}_{\mathbf{e}}$ and $\operatorname{Ref}_{\mathbf{d}}$ where $\mathbf{e} = \begin{bmatrix} 0\\1 \end{bmatrix}$

and
$$\mathbf{d} = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$
. Explain how these transformations relate to F_1 and F_2 .

- (f) It is not hard to see, for each unit vector \mathbf{u} , $\operatorname{Ref}_{\mathbf{u}}$ represents a reflection about a line ℓ in \mathbb{R}^2 . Based on your response from the previous item, make a conjecture/guess which says how the line ℓ relates to the vector \mathbf{u} .
- (g) Prove that, for an arbitrary unit vector \mathbf{u} , $\operatorname{Ref}_{\mathbf{u}}$ is a linear transformation. Hint: You can use properties of the dot product (which should have appeared in your MA122/MA161-162 text). In working with the definition of $\operatorname{Ref}_{\mathbf{u}}$, it is important to always keep track of which objects are vectors and which objects are scalars.
- (h) It is not hard to see that every unit vector can be written in the form $\begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix}$ for some angle θ . What does θ represent (geometrically) for the corresponding unit vector?
- (i) Writing $\mathbf{u}_{\theta} = \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix}$, compute the standard matrix representation for $\operatorname{Ref}_{\mathbf{u}_{\theta}}$.
- (j) Based on your observations (much earlier) concerning $T = F_1 \circ F_2$, we expect that $\operatorname{Ref}_{\mathbf{u}_{\theta}} \circ \operatorname{Ref}_{\mathbf{u}_{\phi}}$ to be a rotation in the plane. Thus, we should have

$$R_{\gamma} = \operatorname{Ref}_{\mathbf{u}_{\theta}} \circ \operatorname{Ref}_{\mathbf{u}_{\phi}}$$

for some angle γ . Using geometric reasoning (and providing a drawing), what is γ in terms of θ and ϕ ?

- (k) Justify your answer by computing $\operatorname{Ref}_{\mathbf{u}_{\theta}} \circ \operatorname{Ref}_{\mathbf{u}_{\phi}}$ and simplifying.
- **Problem 3.** Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let A be its standard matrix representation, which is necessarily an $m \times n$ matrix.
 - (a) Using the theory we have developed so far in this class, prove the following statement:

If T is both one-to-one and onto, then m = n and so the matrix A is square.

- (b) Prove or give a counterexample of the following statement:
 - If A is a square matrix (i.e., m = n), then T is one-to-one.
- (c) Prove or give a counterexample of the following statement:
 - If A is a square matrix (i.e., m = n), then T is onto.

Note: By "find a counterexample", we mean to find an explicit square matrix (say a 2×2 or 3×3) for which the conclusion (one-to-one or onto) does not hold. Further, you should demonstrate your assertion. For example, if you can find a 2×2 matrix whose corresponding linear transformation T is not one-to-one, give an example of a non-zero vector \mathbf{x} for which $T(\mathbf{x}) = \mathbf{0}$.

- **Problem 4.** It is well known that for general matrices A and B, $AB \neq BA$, even when both operations are defined. Here we will discuss what matrices A do have the property, AB = BA for every other matrix B.
 - (a) Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be the 2 × 2 matrix with $a, b, c, d \in \mathbb{R}$. Compute AI_2 and I_2A for $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, the identity matrix. Does I_2 commute with any matrix A?
 - (b) Now, we will explore what conditions are required for A to commute with any other B. Let $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Compute AB and BA.

- (c) What conditions on a, b, c, d are required for AB = BA? Write A simplified with these conditions.
- (d) Let $C = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. Compute AC and CA. Again, what conditions will make these two matrices equal? Write this simplified A.
- (e) Let $D = \begin{bmatrix} p & q \\ r & s \end{bmatrix}$. Compute AD and DA.
- (f) Write your own theorem based on your observations here.
- (g) Make a conjecture on what kinds of $n \times n$ matrices commute with every other $n \times n$ matrix.